QSAR for acute toxicity to fathead minnow

ثبت نشده
چکیده

2.1.Date of QMRF: 03.09.2009 2.2.QMRF author(s) and contact details: [1]Indrek Tulp Molcode Ltd. Turu 2, Tartu, 51014, Estonia [email protected] http://www.molcode.com [2]Tarmo Tamm Molcode Ltd. Turu 2, Tartu, 51014, Estonia [email protected] http://www.molcode.com [3]Gunnar Karelson Molcode Ltd. Turu 2, Tartu, 51014, Estonia [email protected] http://www.molcode.com [4]Dimitar Dobchev Molcode Ltd. Turu 2, Tartu, 51014, Estonia [email protected] http://www.molcode.com [5]Dana Martin Molcode Ltd. Turu 2, Tartu, 51014, Estonia [email protected] http://www.molcode.com [6]Kaido Tämm Molcode Ltd. Turu 2, Tartu, 51014, Estonia [email protected] http://www.molcode.com [7]Deniss Savchenko Molcode Ltd. Turu 2, Tartu, 51014, Estonia [email protected] http://www.molcode.com [8]Jaak Jänes Molcode Ltd. Turu 2, Tartu, 51014, Estonia [email protected] http://www.molcode.com [9]Eneli Härk Molcode Ltd. Turu 2, Tartu, 51014, Estonia [email protected] http://www.molcode.com [10]Andres Kreegipuu Molcode Ltd. Turu 2, Tartu, 51014, Estonia [email protected] http://www.molcode.com [11]Mati Karelson Molcode Ltd. Turu 2, Tartu, 51014, Estonia [email protected] http://www.molcode.com 2.3.Date of QMRF update(s):

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

QSAR modelling of acute toxicity in the fathead minnow

There are more than 70000 chemicals in use today and many more being synthesized. It is vital to assess the influence of these compounds on the environment and on human health. Experimental testing is both time-consuming and expensive, and accordingly, there is a pressing requirement for accurate in silico methods to assess the toxicity. QSAR studies of the environmental fate of chemicals are w...

متن کامل

Neural network based classification of acute toxicity of phthalate esters to fathead minnow

Chemoinformatics, the brain child of Frank Brown [1], has emerged as new branch of science by the technological marriage of information technology and chemistry [2,3]. Quantitative Structure-Activity Relationships (QSARs), needed for the analysis/drug-design, are in the form of structural alerts that incorporate molecular substructures, presence/absence of activity, structural relationships, et...

متن کامل

QSAR model for acute toxicity to Fathead Minnow

2.1.Date of QMRF: 03.09.2009 2.2.QMRF author(s) and contact details: [1]Indrek Tulp Molcode Ltd. Turu 2, Tartu, 51014, Estonia [email protected] http://www.molcode.com [2]Tarmo Tamm Molcode Ltd. Turu 2, Tartu, 51014, Estonia [email protected] http://www.molcode.com [3]Gunnar Karelson Molcode Ltd. Turu 2, Tartu, 51014, Estonia [email protected] http://www.molcode.com [4]Dimitar Dobchev Molcod...

متن کامل

Predicting Modes of Toxic Action from Chemical Structure: Acute Toxicity in the Fathead Minnow (Pimephales Promelas)

In the field of aquatic toxicology, quantitative structure–activity relationships (QSARs) have developed as scientifically credible models for predicting the toxicity of chemicals when little or no empirical data are available. In recent years, there has been an evolution of QSAR development and application from that of a chemical-class perspective to one that is more consistent with assumption...

متن کامل

Development of an ecotoxicity QSAR model for the KAshinhou Tool for Ecotoxicity (KATE) system, March 2009 version

The KAshinhou Tool for Ecotoxicity (KATE) system, including ecotoxicity quantitative structure-activity relationship (QSAR) models, was developed by the Japanese National Institute for Environmental Studies (NIES) using the database of aquatic toxicity results gathered by the Japanese Ministry of the Environment and the US EPA fathead minnow database. In this system chemicals can be entered acc...

متن کامل

Use of Statistical and Neural Net Approaches in Predicting Toxicity of Chemicals

Hierarchical quantitative structure-activity relationships (H-QSAR) have been developed as a new approach in constructing models for estimating physicochemical, biomedicinal, and toxicological properties of interest. This approach uses increasingly more complex molecular descriptors in a graduated approach to model building. In this study, statistical and neural network methods have been applie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010